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The initial value problem related to axisymmetric forced oscillations of a 
rigidly rotating inviscid fluid enclosed in a finite circular cylinder is examined in 
linear approximation with the aid of the Laplace transform technique. An 
impulsive starting motion is considered. The solution consists of a ‘periodic ’ 
motion which oscillates with the forcing frequency, together with a doubly 
infinite set of inertial modes whose presence is determined by the initial con- 
ditions and whose frequencies form a dense set in the range ( - 20, Bw), where 
w is the angular velocity. The nature of the periodic or ‘steady-state’ part of 
the solution is strongly dependent on the precise value of the forcing frequency 
a (a > 0) when a 6 2w. In  particular the system will resonate if a equals any 
one value of the dense set of resonant frequencies. It is shown that no internal 
sets of discontinuities in velocity or velocity gradient are present in the inviscid 
flow for finite times. Effects of viscosity on the inviscid solution are also dis- 
cussed, and it is argued that when the inertial modes decay the steady-state 
flow will contain pseudo-random patterns of internal shear layers for some values 
of a < 2w. It seems possible that these shear layers may be interpreted as 
owing their existence indirectly to viscosity. 

1. Introduction 
Properties of the motion of homogeneous rotating fluids have been studied 

by a number of authors, but nearly all the attention to date has been focused 
on bodies moving through or oscillating in an infinite fluid. Some of the results 
of these investigations have been surveyed by Morgan (1951) and Squire (1956). 
One of the most striking properties of forced oscillations in a rotating fluid is 
the difference between the types of motion obtained when the forcing frequency 
a is less than or greater than twice the angular velocity w. When a > 2w, 
under assumptions of small time-harmonic motion, the field equation for the 
disturbance pressure is elliptic in spatial variables, and the system has properties 
which are not markedly different from those of a non-rotating fluid. However, 
when a < 2w the field equation is hyperbolic in spatial variables, and distur- 
bances may propagate through the fluid away from the source without losing 
intensity by means of inertial waves, which have frequencies in the range 
( 0 , 2 w ) .  In some cases discontinuities may exist in the flow on characteristic 
surfaces whose presence is governed by the hyperbolic equation. Oser (1957, 
1958) has made a theoretical and experimental study of such a case, namely an 
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oscillating disk in an infinite rotating fluid. For further discussion see also 
Reynolds (1962a, b ) .  

This paper aims to illuminate some of the corresponding properties of forced 
motion in a rotating fluid of finite extent. A special but typical case has been 
analysed by Wood (1965) under assumptions of steady motion. When a < 2 0  
this analysis involves the solution of a boundary value problem where the field 
equation is hyperbolic. This problem is ill posed in that the flow solution ob- 
tained does not vary continuously with the boundary conditions, and the rela- 
tion between solution and boundary conditions is in fact highly irregular. 
Any mathematical objections inherent in the formulation of such a problem 
are however overcome by considering an initial value problem. 

The motion analysed here is that of an inviscid incompressible fluid in a finite 
right circular cylinder whose initially plane ends are impulsively set into simul- 
taneous identical and axisymmetric time-harmonic deformations. The solution 
is obtained for all values of a and w, including the case a = 20, for which no 
solution is obtained by steady-state assumptions. In  every case the solution 
for the disturbance pressure (and hence the velocity) may be divided into two 
parts. The first part oscillates harmonically with the forcing frequency a, 
and is termed the ‘steady-state’ solution. For cases other than resonance this 
is the solution obtained by assuming the motion to be periodic in time, and it 
contains all the unusual properties mentioned above. The second part contains 
a double sum of normal modes each of which is spatially periodic in the direction 
of the axis of rotation, and whose frequencies form a dense set in the range 
( -  20, 2w) .  It is shown that these modes combine with the steady-state solution 
in such a manner as to negate the anomalous properties of the latter, at least 
for finite times. Thus when a starting motion is considered irregularities present 
under steady-state assumptions are removed. The true properties of this flow, 
however, are difficult to determine in detail because of the complexity of the 
double sum. 

When viscosity is included, as in every practical case, the normal modes will 
decay exponentially from the starting time (this has been proved for a general 
container by Greenspan (1965)). This will leave us with a forced motion which 
for large Taylor numbers may be expected to be a modification of the inviscid 
forced solution. Some aspects of the effects of viscosity on a similar motion 
have been studied by Wood (1966). His results show that a t  least in some cases, 
notably those where the corresponding inviscid motion has internal discon- 
tinuities in the velocity gradients, the inviscid steady-state solution is indeed 
a good approximation to the viscous one, with shear layers replacing surfaces of 
discontinuity in velocity gradient. It would appear then, paradoxically, that the 
inviscid steady-state solution only has significance for the viscous motion, at 
large times. In this sense the ensuing internal shear layers may be regarded as 
being indirectly created by viscosity. 

Many of the anomalous properties of the steady-state solution as first 
noticed by Wood (1965) (considering the inviscid case for simplicity) are 
directly attributable to the infinity of ths number of terms in the series which 
results from representation of the disturbance in terms of Bessel functions of 
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the radial co-ordinate. The ‘peculiar’ features of the flow, namely the presence 
of finite discontinuities and logarithmic singularities in velocity gradient and 
velocity for various configurations, and their pseudo-random location, are only 
present if the forcing function .f(r) has a discontinuity in its derivative or has 
a non-zero gradient at the corner-i.e. f ’ (a )  + 0 (although some discontinuities 
in velocity gradient may occur if onlyf”(a) + 0) .  For the purposes of discussion 
it is assumed that f ( r )  is analytic and f ’ (a)  + 0. For non-resonant cases where 
a < 2 0  the steady-state solution may be written in the form 

X = analytic terms 

( l + o ( l / m ) ) ,  (1.1) 
EK m ( - ) ~ C O S  (kmr - in) sin (Qkmaz/l) 

+-sinat C - 
rf m=Mo m3 cos (Qk,a) 

where r and z are co-ordinates, k ,  are the solutions of J,(kmu) = 0, K is constant 
for a given configuration, a is the cylinder radius, 1 the cylinder length, M, 
is a sufficiently large integer, and 

It appears that a solution of this form is obtained whenever the cylinder is 
subjected to a periodic three-dimensional disturbance. For some values of Q 
each term in the series is of O( l /m3)  and for others O(l /m2) .  Since lc, N mn- 
for m large, discontinuities may then occur respectively in the second and 
first derivatives of S and therefore in the velocity gradients and velocities. 
The existence of these and other phenomena is critically dependent on the basic 
parameters. For example, an infinitesimal change in any of a, o, I or a could 
change the motion from a resonant state to a pseudo-random pattern of velocity 
discontinuities, or vice versa. However, if the disturbance is representable 
as a finite series of Bessel functions, no discontinuities will be present. 

The phenomenon may be interpreted in terms of a superposition of stationary 
inertial waves, all having the same frequency but different wavelengths, and 
with their wave-fronts parallel to the characteristic cones. These waves will 
reflect off the side wall at the characteristic angle. The motion in the interior is 
representative of the forcing function f ( r )  extended along characteristics, and 
on opposite sides of the characteristics emanating from the corners we expect the 
disturbance to be symmetric (in the neighbourhood) by virtue of the side-wall 
reflexion of the constituent inertial waves. Hence if f’(a) + 0 there is a virtual 
discontinuity in f ’ ( r )  at r = a, and $his will be reproduced in the interior as a 
discontinuity in the velocity gradient along the corner characteristics. 

With the exception of $ 5 ,  all statements following refer to inviscid motion 
unless explicitly stated otherwise. Nonlinear effects have been neglected, 
although in the case of resonance this cannot be valid for large times. 

2. Formulation 
We consider the motion of an inviscid incompressible fluid enclosed in a, 

finite circular cylinder which is rotating with constant angular velocity w 
about its axis of symmetry. The ends are initially plane and perpendicular to 
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the axis and the fluid is in a state of rigid rotation. At time t = 0 the ends are 
set impulsively into small time-harmonic oscillations in the axial direction. The 
deformations are axisymmetric and in phase. 

Let the cylinder have length 21 and radius a. We take cylindrical polar co- 
ordinates ( r ,  q5, z ) ,  with the axis of the cylinder along the z-axis and the ends 
initially in the planes z = f 1. Let the ends have the motion 

z =  * I  (t < 0)) 

k 1 + ef(r) sin at (t  3 0), 

where e < I, a is a constant and f(r) is a sufficiently regular function of r .  
Consider axes rotating with the cylinder. If we let the velocity components in 
the direction of increasing ( r ,  q5, z )  be (u, v ,  w), the linearized boundary condition 
on the fluid a t  both z = & 1 is, for t 2 0, 

w = saf(r) cos at. (2.2), 

At r = a the boundary condition is 
u = 0. 

The conditions for impulsive motion (Lamb 1932, $11) give for t = 0 (or more 
correctly t -+ 0 + ) 

where u is the velocity vector (u, v ,  w) and I I ( r ,  z )  is an impulsive pressure func- 
tion which must satisfy 

v2rI = 0. 

Expressing the boundary conditions a t  t = 0 in terms of Il gives 

(2.4) u = - VrI( r ,  2)) 

(2.5) 

an 
z = * z :  - = -eaf(r). 

ax 

We thus have a simple boundary value problem for II which has the solution 

where the k, are the solutions of 

Jl(kn,a) = 0. (2.8) 

Equation (2.4) then gives the velocity distribution at t = 0 which constitutes 
the initial conditions for the subsequent motion. 

The linearized Euler equations relative to the rotating axes are 

aw ax au ax av 
at ar ' at at az ) 

- - -- 2wv = -- -+2wu = 0, - -- 

where X(r, z ,  t )  is the disturbance pressure, absorbing the centrifugal and gravi- 
tational factors, and e (equation (2.1)) is supposed sufficiently small so that non- 
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linear terms may be neglected. From dimensional considerations this will be so 
if 

where If(r)l max is the maximum value of If(r)l .t The continuity equation is 

a% u aw -+-+- = 0, 
ar r a x  

and equations (2.9) and (2.10) give 

(2.10) 

(2.11) 

(2.12) 

This is the basic field equation for x, and is to be solved such that the boundary 
and initial conditions are satisfied. The boundary conditions (2.2,2.3) in terms of 
x are 

By use of the relations 

(2.13) 

(2.14) 

(2.15) 

we have the initial conditions a t  t = O +  

V2X(r , z , t )  = 0, (2.16) 

(2.17) 

which are sufficient to determine x. I n  conjunction with the boundary con- 
ditions, (2.15) implies that we may take x = 0 at t = 0. 

3. Formal solution 
To solve (2.1 1) by the Laplace transform procedure, we define 

X ( r ,  z ,  s )  = 9 X ( r ,  z ,  t )  = ecstX(r, z ,  t )  dt ,  sum 
where Res > 0. The transformed field equation for X ( r ,  z ,  s )  is then 

a2x lax a2x 4w2a2n - + - - + A ‘ - -  = -____ 
ar2 r ar a22 8 2  az2 ’ ( 3 4  

where h2 = 1 + ( 2 w / ~ ) ~ .  The transformed boundary conditions are 

ax _ -  r = a: - 0, ar 

t However this cannot be uniformly valid for large times, in view of resonances in the 
solution and the possibility of nonlinear resonant interactions. 
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A particular solution of (3.2) is readily found to be 

X ,  = - n(r,z). 

The general solution of the homogeneous equation is 

W 

X ,  = Z B, JO(IGmr) sinh (k,z/h), 
m= 1 

where Bm are independent of r , z  and the Ic, are again the solutions of 

J1(lc,a) = 0. 

We need to choose the B,, such that 

x = X , + X ,  

satisfies the boundary condition (3.4). This will be the case if 

(3.5) 

sinh k,z ( a2 ) sinh k,z/A] . (3.8) - A  1-- _ _ ~ ~  
cosh k,  1 a2 + s2 cosh k,, l/h 

The solution for x is now given by the inverse transform 

where c > 0. In  order to obtain this solution we need to consider four different 
cases (without losing generality we may take a and w to be non-negative). 

(i) a > 2w 

The integrand has simple poles at  the points s = kia and also at the points 
s = & iPmn, where 

(3.10) 
Pmn = [4k;l2+ (2n+ 1)2~2]3 ’  

for all integers n and all positive integers m. Clearly, lPmnl < 2w for all m,n, 
and the set of poles for each rn has limit points at  c 2iw. The function has an 
essential singularity at  each of these two points, and to avoid a discussion of 
these singularities we adopt the procedure of evaluating the residues at  s = & ia, 
kip,,, and then verify that their sum is the desired solution for x. The sum 
of the residues of 

2w(2n+ l)7r 

sinh k,z/h 
est (3.11) 
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at s = ia ands = - h i s  
(az - 4w2)4 sinh ym z 

- sin at, 
a2 cosh y,l 

539 

where 

The sum of the residues at  s = i&,, - iPmn is 
Trz 

- w(4k,  1)3 A,,( - )"sin ( 2 n  + 1) - sinP,,t, 
21 

where 
1 

( 2 n +  1).rr[4kk12+ (2n+ 1)27r2]3 Amn = 

(3 .12)  

(3 .13)  

(3 .14)  

Hence for a > 2w we have 

where 

, sinhy,z 
cosh ym 1 

sin at 

Trz 

00 

x ( r , ~ , t )  = 6 C C, JO(kmr) 
m= 1 

W 

- ~ ( 4 k , , 1 ) ~  C ( - )n A,, sin ( 2 n  + 1 )  - sinPm,t 
n= 0 21 

c = 
2a 

Jo(k,r)dr. 
a2km J i (kma)  o 

(3 .17)  

(ii) a < 2w, a $. P,, 
The same procedure as in case (i) applies to give the same expression for x. 
The solution has vastly different properties in this case however, and is better 
written in the form 

sin an, z 
sin at 

cos a, 1 
~ ( r , ~ , t )  = 6 C Cm Jo(kmr) ( ~ W ~ - C L ~ ) * - - - -  

m 

m= 1 

I 77% m 

- ~ ( 4 k , 1 ) ~  C (-)nA,nsin(2n+1)-sin,8,,t , (3 .18)  
n= 0 21 

where 

It may readily be verified that both (3 .16)  and (3 .18)  satisfy all the conditions, 
by virtue of the relation 

(3 .19)  
sin a,z 00 ( - )" sin (2n + 1 )  (nz/21) 
-- - 8a,l C ( - 1  6 z < I), cos am 1 n = O  ( 2 n + 1 ) 2 ~ 2 - 4 ~ ; Z 2  

and the corresponding expressions for 

sinh kmz sinh ymz 
cosh k,l ' cosh ym 1 ' 
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(iii) a = PmN 
X ( r ,  z ,  s) now has double poles at s = k ia. Summing all the residues in this case 
gives 

m 

m= 1 
~ ( r , z , t )  = - e  2 C,J,(k,r) 

2 jrrZ 772 
+a cos (ZN+ 1)  - sinat + a3 sin (ZN+ 1) - sin at 2t  21 21 

I 7T2 00 

@(ah, 113 2 ( - )" A,, sin (2n + 1 ) - 21 sin t , (3.20) 
n= 0 
n 9 N  

where a,, a2,  a3 are the constants 

( - ) N  (4w2 - a2) (2w2 - 3a2) 
4w2 k,, la 
_ ~ _ _ _  _- ( - ) N ( 4 d - a 2 ) 2  

) a2 = ( - ) N ( 4 # 2 4 2 ) 4 ,  a3 = "1 = ~ _ _ _ ~  4w2km1 
(3.21) 

This solution also satisfies the field equation, boundary and initial conditions. 

(iv) a = 2w 

Here the above poles at s = & ia disappear respectively into the essential singu- 
larities s = f- 2iw, and the solution consists of the sum of thenormal modes only, 
in the form 

7T2 w m  

~ ( r , z , t )  = -ew 2 C ( - )n (4kTf i1 )3  C,A,,,J0(k,r)sin(2n+1)--sin~,,t, 
m = l  n=O 21 

(3.22) 
where in this case 

At first sight this solution may not appear to satisfy the boundary conditions 
at  z = 5 6, since cos (2n + 1) (nx/21) will be zero there. However, let us con- 
sider one Bessel component, i.e. a case wheref(r) = J,,(kmr). Then 

?rz m 

X (  r ,  z ,  t )  = - E 8 ( 4 ~ ) ~  k: P Jo( k, r )  C ( - )" A,, sin (2% + 1) - sin ,!?,, t , 
n= 0 21 

and if we consider the series axlax for any given t we find that as IzJ 3 1 - 

9 + e 4 w 2 j ( r )  sin 2wt, (3.23) 
az 

as required. The discontinuity at the end-points may be regarded as a manifesta- 
tion of the Fourier series representation of the function. It should be noted that 
in taking the limit of ax/& as CL -+ 2w + , where x i s  the complete solution 
(equation (3.16)), the boundary conditions at x = & 1 remain satisfied by virtue 
of non-uniformity over z of the limit of each of the two parts of the solution 
(steady state and modes) in the neighbourhoods of the ends of the cylinder. 
This suggests that in the limit 1x1 + 1 - the full series in m (equation (3.22)) 
satisfies equation (3.23)) although the limit is non-uniform in m (and also in a). 
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4. Discussion of the solution 

velocities u, v, w. By use of the identities (2.14) we have 
The solutions for the disturbance pressure function x enable us to obtain the 

where xt = ax/at, and these together with (2.9) give 

Hence the velocities are effectively linear functions of the first derivatives of the 
pressure. 

We now consider the consequences of the various solutions for x .  When 
a > 20, x has the form (equation (3.16)) 

m sinh ymz 
x ( r , z , t )  = -s(a2-4w2)+ C C,J,(lc,r) ---sinat+normalinertialmodes. 

m= 1 cosh ym 1 
With the exception of the inertial modes, this is akin to the irrotational surface 
wave solution. For the radial and azimuthal velocity components for the forced 
modes, most of the motion is near the ends of the cylinder with exponential 
decay towards the centre. This case presents little of interest in comparison with 
that of a < 2w. 

When a < 2w,  a + pm,,x has the form (equation (3.18)) 

sin am z 00 

X(r,z, t)  = -~ (4w2-a2)4  CmJo(kmr)- sin at + modes. 
m= 1 cos a, 1 

This solution except for the modes will hereafter be denoted S ,  and is that 
obtained under the assumption of steady oscillating motion with sinat de- 
pendence in x. The inertial modes are present in order to satisfy the initial condi- 
tions, and may be regarded as generated by the starting motion. S has unusual 
properties which may be seen by considering the terms of the series when 
m is large. Assuming that the deformations of the ends are smooth we may take 
df” ( r )  to  be continuous in [0,  a] and f’(0) = 0, where 

Without losing generality we may also take f (a )  = 0, and we then have for Ic, 
large (Watson 1944) 
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Also, for m large we have 

k,a = (m- (4.4) 

where m, is some integer. Using the asymptotic form for Jo(k,r) and excluding 
r from a neighbourhood of zero we may write 

K sinat OD ( - )” cos (kmr - in) sin (Qk,az/l) 
m3 cos (Qk,,a) S = analytic terms + c ~ c 

r4 m = l  

(4.5) 
where K is a constant and 

When !J is rational, i.e. Q = PI&, where P and Q are coprime integers, an in- 
spection of the series reveals that S has discontinuities in the second derivative 
and in some cases, depending on the relative values of P and Q ,  discontinuities 
in the first derivative (this analysis will not be pursued here, and the reader is 
referred to Wood (1965) and Baines (1966) for the details for similar cases). 
These discontinuities will, in the absence of the modes, be realized as discon- 
tinuities in the velocity components and their gradients across the cones 

r z  
a I  
- f Q- = constant, (4.7) 

which emanate from the top and bottom corners of the cylinder, and across 
the continuation of these cones by reflexion at  the side, ends and axis of the 
cylinder. These cones may be identified as characteristics, and will henceforth 
be referred to as such. When Q is rational these reflected characteristic cones 
will return to the top or bottom corners after a finite number of reflexions. 
However, if Q is irrational there is no terminating point for the reflexions, and 
these cones are dense throughout the cylinder. Also, the argument, which leads to 
the discontinuities in u, v, w and their gradients fails when Q is irrational, and 
the corresponding properties of the motion in this case are not known except 
for that of resonance. Hence if the disturbance pressure is purely represented 
by S the corresponding flow in the cyIinder has peculiar properties which are 
strongly dependent on Q, such that an infinitesimal change in Q could drastic- 
ally change the characteristic pattern and hence also the flow field. The situation 
is further complicated by the fact that the resoiiance frequencies p,, are 
dense throughout the range ( 0 , 2 w ) .  This will be commented on later. 

We now consider the full soIution for x, equation (3.15). Using the power 
series expansions for sinat, sinPm,t we may express x in the convergent 
expansion 

where 
~ ( r ,  z ,  t )  = xl(r, z )  t + Xz(r, x )  t3 + . . . + xstBs--l + ...) (4.8) 
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Since 

we have (4.10) 

This is an elliptic equation for x1 which can therefore have none of the dis- 
continuity and pseudo-randomness properties of S. Substituting (4.8) in the 
field equation (2.11) and equating coefficients of powers oft, we obtain 

6V2X2 = - 4w2 X l , Z Z ,  

(2s - 1) (2s - 2) v2xs = - 4w2xs-l, 

20v2X3 = - 4W2x2,zz, 

.......................................... 

(4.11) 

Hence every function xs satisfies a Poisson equation, and it follows that at  no 
time does the function x possess first or second derivative discontinuities in the 
interior, fox any value of a. Also x must vary continuously with the boundary 
conditions and dimensions of the cylinder, at  least for finite times. The doubly 
infinite set of normal modes effectively combines with S to negate the anoma- 
lous properties of that part of the solution. For the cases a = Pmn, a > 2w and 
a = 2w the same argument will apply. Thus for all values of a the functions xs 
and x will be analytic in the interior of the cylinder for finite times. 

When a = PmN we have the case where the forcing frequency is equal to one 
of the resonant frequencies of the system. Equation (3.20) shows that there 
are essentially three terms of frequency a, one of which has the form 

sin { ( 2 N +  1) (nx/2Z)}tcosat, 

and will oscillate with large amplitude when t is large. The resonant frequencies 
jmN are dense in the range [0,2w] in the same manner in which rational numbers 
axe dense in the field of real numbers, and the corresponding solutions for x will 
be similarly placed among the non-resonant solutions. The above result (equa- 
tion (4.11)), however, still requires that x vary continuously with a, w ,  u and 1 
for finite times. We may therefore expect the (continuous) variation of ampli- 
tude of x with a, etc., to become larger as t increases and the 

sin{(SN+ 1) (vz/2Z)} tcosat 

terms become dominant. For the other normal modes the A,, may be written 

1 
A,, = 
n+N (2nf 1)7~[4?&Z~+(2n+ 1)2~q 

. (4.12) 
(ax+ 1)2n2 - 

4E&Z2(2N+ l )n[4k~Z2+(2n+ 1)277'2]4[(2N+ 1)2v2-(2n+ 1)2n2] 

When ct = 2w we have the singular case which exists for all situations involving 
forced oscillations in rotating fluids. For the conditions given here, no solution 
of (2.11) oscillating harmonically with frequency 2w is possible, and the inertial 
modes constitute the whole solution as given by (3.22). The characteristic cones 
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of the case a < 2w have degenerated into flat surfaces z = constant, and those 
emanating from the corners have become coincident with the end surfaces 
x =  k1. 

It is possible that this motion (a  = 2 w )  is physically unstable, and some 
experiments carried out by the author do not contradict this suggestion. 

5. Nonlinear and viscous effects 
The number of possible patterns of behaviour of the system multiplies when 

nonlinear effects are considered. Linearization has been effected a t  two points- 
first in the neglect of the u . Vu terms in the field equation, and secondly in the 
end conditions via equation (2.2). In  an investigation of the behaviour of the 
system to second order in e both of these features need to be considered, al- 
though their effects are additive. In  both cases the second-order contribution to 
the motion is dependent on the first-order solution, and, if only the forced modes 
(of frequency a)  are considered, both effects will produce a second-order 
contribution to the pressure function x which is out of phase with the first- 
order term and has frequency 2a, provided a < w .  In  addition the nonlinear 
term in the equation of motion will produce a time-independent second-order 
contribution to x, resulting in a steady azimuthal drift which will vary with 
co-ordinates r and x .  

The possibility of second-order resonant interactions among the multitude 
of first-order modes, both free and forced, cannot be ruled out. The most 
interesting possibility is perhaps the interaction of two forced modes to pro- 
duce free modes. A cursory examination of the resonance conditions for this 
case indicates that they could be satisfied for various values of the frequency 
ratio a/w and the cylinder length 21. A detailed discussion of resonant interac- 
tions among these ' cylindrical waves' does not however seem justified at present 
in view of the very unusual features, including resonances, of the first-order 
solution. 

We now consider the possible effects of viscosity on the linear solution, 
neglecting the above-mentioned nonlinear factors. On this basis viscosity 
will affect the forced and free modes independently, and since the free inertial 
modes are only generated by the impulsive commencement of motion and are 
not regenerated by any linear process, they would be expected to decay 
viscously on simple energy considerations. This process has been discussed 
a t  length by Greenspan (1964, 1965), and his results show that a given set of 
free inertial modes will decay exponentially in the uniform time scale 

t = O(Rfr/w),  

where the Taylor number R = w12/v. Hence after a period of time corresponding 
to this viscous time scale, the only disturbance remaining in the flow (on linear 
theory) will be the viscous modification of the forced solution, 8. 

Some of the effects of viscosity on a similar type of forced motion have been 
studied by Wood (1966) under assumptions of steady motion. His system 
consists of a similar circular cylinder to the one considered here, but with rigid 
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plane ends. The disturbance is created by forcing the cylinder to precess about 
an axis inclined at  a small angle to its axis of rotation and symmetry, and the 
source of disturbance is thus manifested in the equations of motion as a ‘virtual’ 
body force. This contrasts with the forced surface displacement (equation (2.1)) 
considered in this work, and because of this difference Wood’s lengthy viscous 
analysis cannot be directly tailored to this particular system. However, with the 
exception of one or two minor details the inviscid solutions for the two cases 
are very similar, and have the same properties. In view of this it seems not 
unreasonable to suppose that the basic conclusions of the viscous analysis will 
carry over. (The dubious reader may prefer to accept the converse: that the 
commencement of motion in Wood’s cylinder would generate a similar set of 
normal inertial modes.) Wood’s viscous analysis is only applicable to non- 
resonant cases where discontinuities and logarithmic singularities appear in the 
(inviscid) velocity gradient, and not in the velocity-cases corresponding to 
Q rational here, with Q = PI&, where P and Q are coprime integers and with 
P 3 2 (mod 4). With Q restricted to this set of values then, and with the above 
assumption, Wood’s results state that the inviscid surfaces of logarithmic 
singularity will be replaced by shear layers of thickness O(R-2) in which the 
velocity gradients are O(R)) larger than elsewhere. The extreme sensitivity of 
the internal shear layer pattern to the value of the parameter Q remains. The 
reader is referred to his paper for further details. Viscosity is therefore responsible 
for the very existence of these shear layers, whose inviscid counterparts are 
not present when a starting motion is considered. 

Another possibility is that, together with the above behaviour, resonant 
modes with frequencies near the forcing frequency will grow linearly with time 
and render the motion unstable. 

The situation a = 213 represents a special case, as the steady-state solution 
is zero in the interior and the free inertial modes must decay in the same time 
as in other cases. The linearized boundary condition ( 2 . 2 )  is clearly no longer 
satisfactory as a representation of an oscillating surface; whereas, if the imposed 
normal velocity distribution is taken as the true boundary condition, the dis- 
posal of the injected fluid with no motion in the interior suggests some 
unusual boundary-layer features. 

A careful and as yet unpublished experimental study of forced oscillations 
in a rotating circular cylinder is currently being carried out by A. D. McEwan at  
Aeronautical Research Laboratories, Fisherman’s Bend, Australia. Many of the 
features of the theory outlined and quoted here have been reproduced. In  
particular the existence of shear layers emanating from cylinder corners, their 
sensitivity to container dimensions and the presence of resonances at theoretic- 
ally predicted configurations have been confirmed. 

The author is grateful to Dr W. W. Wood of Melbourne University, with whom 
he had some helpful discussions, and to C.S.I.R.O. (Australia) Division of 
Meteorological Physics for a studentship which has enabled him to pursue 
research at Cambridge University. This work was commenced while the author 
was a t  Aeronautical Research Laboratories, Fisherman’s Bend, Australia. 
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